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Abstract: To  have  a  high  quality  experimental  growth  of  crystals,  understanding  the  equilibrium  crystal  shape  (ECS)  in  differ-
ent thermodynamic growth conditions is important. The factor governing the ECS is usually the absolute surface formation ener-
gies  for  surfaces  (or  edges  in  2D)  in  different  orientations.  Therefore,  it  is  necessary  to  obtain  an accurate  value of  these  ener-
gies  in  order  to  give  a  good  explanation  for  the  observation  in  growth  experiment.  Historically,  there  have  been  different  ap-
proaches proposed to solve this problem. This paper is  going to review these representative literatures and discuss the pitfalls
and advantages of different methods.

Key words: surface; first principle; morphology

Citation: C  K  Sin,  J  Z  Zhang,  K  Tse,  and  J  Y  Zhu,  A  brief  review  of  formation  energies  calculation  of  surfaces  and  edges  in
semiconductors[J]. J. Semicond., 2020, 41(6), 061101. http://doi.org/10.1088/1674-4926/41/6/061101

 

1.  Introduction

γ

F = U − TS

The fundamental thermodynamic theory of surfaces, initial-
ized  by  the  American  scientist  Josiah  Willard  Gibbs,  is  one  of
the  most  practical  tools  for  the  study  of  surface-related  phe-
nomena[1–4].  For  this  approach,  the  key  quantity  is  the  sur-
face free energy (or surface energy), , which is equal to the ex-
cess free energy per unit area on account of the creation of sur-
faces,  compared  with  the  bulk  structure,  plus  the  energy
change due to deformation in  liquid or  reconstruction in  sol-
id[5].  For  a  liquid  surface,  the  phrase  "surface  tension"  was
widely  used  for  the  surface  free  energy.  This  phrase  had  also
been  extended  to  the  surfaces  of  solids  previously,  which,
however,  produces  a  confusion  between  the  surface  free  en-
ergy  and  the  intrinsic  surface  stress  of  solids,  revealed  by
Gibbs[6].  Therefore,  currently,  the  term  "surface  tension"  is
rarely  used  for  solids.  Instead,  we  use  the  term  surface  en-
ergy,  which  depends  on  the  temperature  in  the  experiment
or  computational  simulation by  where F, U, T and
S are  the  surface  (free)  energy,  internal  energy,  temperature
and entropy respectively.

For surfaces of solids, especially metals and semiconduct-
ors, the surface energy is important in many related fields, de-
termining the equilibrium shape of  monocrystals,  brittle  frac-
ture,  or  the  rate  of  sintering.  Wulff  construction[7] is  a  preval-
ent  technique being used in  the prediction of  the morpholo-
gies  because  it  is  able  to  formulate  the  relation  between  the
surface  energy  of  surfaces  (and  edges  of  2D  lattices)  and  the
relative  feasibility  of  their  formations  in  different  directions.
Hence,  the  principle  of  Wulff  construction  will  be  introduced
as an appetizer before any estimation on the surface energy.

γThe anisotropy of  surface free energy  brings  about  the
idea of equilibrium shape, which is known as the Wulff shape,
attributed  to  the  pioneering  works  by  Curie  and  Wulff[6, 8],
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which  is  the  shape  that  minimizes  its  total  surface  energy.  It
is  conventional  to  visualize  the  anisotropy  of  surface  ener-
gies through -plots, which are polar plots of  versus the po-
lar angles  and the azimuthal angle ϕ of the unit vector per-
pendicular  to the corresponding surfaces.  In the 2D case,  is
only related to the polar angle  measured from a certain ap-
propriate crystallographic direction. The process of Wulff con-
struction transforms the -plot into equilibrium shape. Accord-
ing  to  Wulff  construction,  the  equilibrium  shape  is  the  inner
convex  hull  bounded  by  planes  (perpendicular  lines  for  2D
case)  drawn  perpendicular  to  each  direction  at  a  distance

 (  is  a  normalization  constant)  from  the  origin,  shown
in Fig.  1.  As  a  result,  orientations  with  planes  that  lie  outside
of the inner hull are unimportant in the construction of the fi-
nal  equilibrium  shape  because  their  energies  are  too  high.
This  is  indicated  by  planes  that  draw  the  "ears"  at  the  corner
of  the  Wulff  shape  in Fig.  1.  Such  an  exclusion  of  unimport-
ant  planes  results  in  an equilibrium shape with  edges  and/or
sharp  corners.  Practically,  we  do  not  have  an  explicit  func-
tion γ(θ, ϕ)  in  an  arbitrary  direction,  we  may  however  obtain
the surface energy of surfaces in 3D or edges in 2D in certain
directions.  Therefore,  direct  calculation  of  equilibrium  shape
from  the  experimental  or  simulation  data  of  surface  energies
is  more  favorable.  According  to  Ref.  [9],  the  distance r from
the  origin  of  the  crystal  shape  in  arbitrary  direction  is  given
by 

r(hhh) = min
mmm

γ(mmm)
mmm ⋅ hhh

, (1)

γ(mmm)
γ(mmm)/(mmm ⋅ hhh)

where h is the unit vector of the arbitrary direction, and 
is  the  surface  energy  of  a  plane  or  an  edge  with  unit  normal
vector m.  The  minimum  value  of  is  chosen
among  different  surfaces  or  edges  in  direction m.  Even
though  the  energy  of  surfaces  or  edges  are  obtained  only  in
limited  directions,  we  can  calculate  the  radius  of  crystal
shape at every angle and hence the equilibrium crystal shape
(ECS). It is therefore crucial to obtain an accurate value of sur-
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face free energy so ECS can be directly estimated.
Historically,  among solids  the surface energy of  element-

al crystals, mostly metals, was the earliest to be studied by re-
searchers[10].  The surface energies of  semiconductors,  such as
silicon and germanium were later measured[11]. Yet, to date, ac-
curate  experimental  values  for  specific  facets  are  still  rarely
available. Mostly, it was conducted by estimating the solid–li-
quid interfacial energy and liquid surface tension of the materi-
al to calculate the isotropic solid surface energy at finite tem-
peratures,  like the melting temperatures,  which is  then extra-
polated  to  0  K  under  isotropic  approximations[12, 13].  Besides,
there  were  some  techniques,  such  as  zero-creep  and  cleav-
age techniques, being used to estimate quantitative values of
surface  energy,  which  were  applied  to  a  limited  number  of
solids,  usually  metals[14].  Moreover,  the  3D  equilibrium  crys-
tal shapes were also used to estimate the absolute surface en-
ergy of a solid[14, 15]. These experimental values have been sum-
marized  and  reviewed  elsewhere[12, 16–18].  All  of  these  known
values are regarded as averages over a range of crystallograph-
ic orientations and these values yield large discrepancies by dif-
ferent  experimental  approaches.  In  order  to  precisely  control
the  surface  structure  and  composition,  theoretical  calcula-
tions by first-principles or semi-empirical  methods have been
conducted to determine such quantities, especially the aniso-
tropy  of  that  for  specific  facets[19–27].  Due  to  the  recent  suc-
cess  of  density  function  theory  (DFT)  in  the  investigation  of
electronic structure of many-body systems in the field of con-
densed  matter  physics  and  quantum  chemistry,  a  high
throughput  database  of  surface  energies  of  elemental  crys-
tals based on DFT has been published[28].

In  the  framework  of  DFT[29, 30],  slab  geometry  (nanoribb-
on geometry for the case of 2D lattices) is widely used to mo-
del  the  surface  of  metal  or  semiconductor  thin  films[28, 31, 32].
Surfaces  in  semiconducting  compounds  are  different  and
more  complicated.  These  surfaces  can  be  divided  into  three
types:  nonpolar,  polar  symmetric,  and  polar  or  semi-polar
and  non-symmetric  surfaces.  For  the  first  two  types,  they  are

composed  of  symmetric  surfaces  on  the  top  and  bottom  of
the thin film, hence their surface energies can be obtained eas-
ily  by  assuming  that  the  formation  energies  are  identical  on
both surfaces.  The third type of  surfaces are asymmetric  with
a  significant  dipole  moment  perpendicular  to  the  surface
planes.  Among  these  types  of  surface,  the  formation  ener-
gies are difficult to obtain. Strictly speaking, the formation en-
ergies  of  polar  surfaces  may  diverge  for  highly  ionic  crystal,
such  as  alkali  halide  crystals  with  a  strong  dipole  field,  and
charge transfer among surfaces are significant[32–41]. However,
for semiconducting compounds, the covalent nature may still
make  the  formation  energy  of  surfaces  converge  when  the
thickness  of  the  thin  film  is  large  enough.  For  simplicity,  it  is
therefore  preferable  to  base  our  discussion  on  surfaces  cre-
ated  from  relatively  covalent  binary  compound  crystals.  In
this  review  article,  we  focus  on  the  computational  aspect  of
surface  energies  of  semiconducting  binary  compounds,
briefly  on  non-polar  surfaces  and  edges  and  mainly  on  their
polar  surfaces,  semi-polar  surfaces,  and  polar  edges  for  2D
materials.

Before  any  algorithm  is  discussed,  let  us  briefly  have  an
overview on the history of  the algorithm developments so as
to have a general  understanding of  key advancements in the
algorithm design of semiconductor surfaces and edges.

For  non-polar  surfaces,  Feibelman,  in  1983,  used metallic
Al  and  Mg  crystal  as  examples  to  demonstrate  the  calcula-
tion  of  non-polar  surface  energies[42],  which  has  been  also
widely applied in semiconductors until now.

For  polar  surfaces,  Chetty  and  Martin,  in  1991,  made  the
first attempt to calculate the absolute surface energy as an in-
tegral  of  local  energy  density[43].  Even  though  this  prelimin-
ary  method  is  not  as  accurate  as  the  prevalent  strategies
nowadays,  it  provided  the  basic  idea  of  creating  an  adapted
surface unit cell bounded by high symmetry planes for the cal-
culation. Then in 2004, Zhang and Wei proposed a method us-
ing different sizes of  wedges and a slab for  the calculation of
polar  surface  energies,  using  GaAs  as  an  example[44].  Making
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Fig. 1. (Color online) Workflow of Wulff construction: (I) draw a -plot (black line) in which  is used as a normalization constant; (II) draw planes
(green line) at every point on the -plot that are perpendicular to the line drawn from the origin to that point; (III) Wulff shape is obtained as the in-
ner convex hull and "ears" appear as indications of missing angles of the Wulff shape.
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use  of  the  subtraction  between  different  wedge  sizes,  edge
(or  called ridge)  contribution can be cancelled out.  The polar
surface  energy  can  be  estimated  by  algebraic  operation  on
the energies obtained from both wedges and slab. Later, Rem-
pel et al., in 2005, using CdSe as an example, proposed a simil-
ar method to Zhang and Wei but Rempel’s method made use
of wedges terminated by both cat- and an-ion at each size in
the  cancellation  procedure[45].  After  that,  Jenichen,  in  2013,
proposed a  method of  using a  heterojunction supercell,  con-
structed  by  both  ZB-  and  WZ-GaAs,  to  approximate  un-
known  surface  energies  from  known  ones[46].  Nevertheless,
this approach is still not free of the coupling between conjug-
ated surfaces, which is the major obstacle. In 2016, a tetrahed-
ral cluster was invented by Zhang et al. to calculate the chem-
ical  potential  of  pseudo-H  atoms  at  different  surface  loca-
tions[47],  which  satisfy  the  ECM  to  minimize  the  stress  in-
duced  by  the  passivation.  These  pseudo  atoms  were  then
used to passivate the bottom surface of  the slab model so as
to mimic the semi-infinite structure. The energies of polar sur-
faces can easily be obtained.  This  method can be directly ap-
plied to both wurtzite and zinc-blende semiconductors.

For  semi-polar  surfaces,  Li et  al.,  in  2015,  proposed  a
wedge  scheme  to  find  the  energy  difference  between  sur-
faces  and  a  reference  polar  surface  in  the  system  of  GaN[9].
Wedges of different sizes and slabs of both polar and semi-po-
lar  surfaces  were  involved.  However,  individual  surface  ener-
gies  were  still  not  found.  Besides,  the  discrepancy  between
the Wulff construction and the experimental observation indic-
ated that  errors  existed in  the calculation.  Later,  Zhang et  al.,
in  2018,  suggested  a  slab  model  of  GaN  with  a  bottom  sur-
face  being  cut  into  a  zigzag  shape  composed  of  non-polar
and  polar  surfaces  which  can  be  easily  passivated[48].  The
semi-polar surface at the top side can then be calculated indi-
vidually. The steric effect caused by passivation can also be in-
cluded  by  simulating  its  contribution  in  a  slab  calculation
with  a  “well”  that  has  similar  steric  corners.  This  approach  is
able  to  remove  the  effect  of  unphysical  charge  transfer  and
steric  effect  in  the  steps,  yielding  a  high  accuracy.  Currently,
Seta et al., in 2019, proposed a scheme including both passiv-
ated  wedges  and  slab  of  AlN  to  estimate  the  surface  ener-
gies[49], which is a similar method to that proposed by Li et al.
but  has  an  improvement  on  the  removal  of  unphysical
charge transfer by passivation. In addition, the temperature ef-
fect  had been taken into account by calculating the partition
function  of  translational,  vibrational,  and  rotational  motions
of  the  atoms.  However,  direct  passivation  of  semi-polar  sur-
face  was  involved,  which  may  induce  the  steric  effect
between  pseudo-H  atoms  and  finally  affect  the  accuracy  of
surface energy estimation.

For polar edges of 2D materials, Mukherjee et al., in 2011,
presented  a  strategy  with  pure  bare  triangular  clusters  of  h-
BN  in  single  size,  each  of  which  has  only  one  type  of  ex-
posed  edge,  to  calculate  the  edge  energies  individually[50].  It
is  now  known  that  the  unphysical  charge  transfer  substan-
tially affects the accuracy of  the algorithm. In 2015,  Cao et al.
offered a scheme as  an extension to Mukherjee et  al.’s  meth-
od[51].  Bare  triangular  MoS2 clusters  of  different  sizes  were
used so that the error from corner contribution is reduced by
energy  subtraction  between  nanoclusters  of  different  sizes.
This  algorithm  can  only  predict  the  morphology  of  MoS2 at
the S-rich limit while discrepancy with the experimental obser-

vation in the Mo-rich limit indicates there are pitfalls in the cal-
culation.  There  could  be  unphysical  charge  transfer  at  the
corner  of  triangular  clusters,  which was later  shown to be re-
moved  by  passivation,  and  the  omission  of  temperature  ef-
fect.  Later,  in  the  study  of  morphology  of  h-BN  nanoclusters,
half-passivated nanoribbons were created to estimate the en-
ergies of polar edges individually by Zhang et al. in 2018[3]. Or-
dinary  H  atoms  were  employed  in  the  passivation,  whose
chemical potential  was obtained from the quadratic fitting of
the  equation  formulating  the  total  energy  of  fully-passivated
triangular  nanoclusters.  In  addition,  the  temperature  effect
was  included by extrapolating the extra  Gibbs  free  energy of
H  atoms  from  the  experimental  data.  The  morphologies  ob-
tained  from  the  theoretical  calculation  are  consistent  with
the experimental works.

After  the  historical  review,  the  algorithm  designs  for  the
calculation  of  different  surface  and  edge  energies  are  going
to be discussed separately as follows.

γ

Before  diving  into  polar  and  semi-polar  surfaces  and  po-
lar  edges,  it  is  good  to  have  a  brief  review  on  the  non-polar
surface  or  edges,  and  compare  them  with  polar  and  semi-
polar  ones.  For  slab  (ribbon)  exposing  non-polar  surfaces
(edges), the constituent elements are in the stoichiometric ra-
tio  within  the whole  structure.  Therefore,  there  is  no need to
consider  the  chemical  potential  contribution  from  individual
elements. Also, since the top and bottom surfaces are identic-
al, it is possible to obtain the formation by assuming both sur-
faces  have  the  same  contribution  to  the  total  formation  en-
ergy. This idea was first proposed by Feibelman in metallic ma-
terials[42].  We can directly apply the following equation to ob-
tain the surface energy  

γ = 
a

(Eslab − nEbulk), (2)

a Eslab

Ebulk

where  is  the  area  (length)  and  is  the  total  energy  of
2D  sheet  (or  1D  nanoribbon); n is  the  number  of  unit  cells;

 is  the total  energy per formula of  infinite bulk structure.
The calculation of the energy of a non-polar surface (or edge)
is  straight  forward because the energy will  be a  constant  un-
der  different  supply  ratio  of  the  constituent  elements.  This
method  can  be  modified  and  applied  to  the  surfaces  (or
edges)  of  the  second  type,  namely,  polar  and  symmetric  sur-
faces  or  edges.  Even  though  they  are  symmetric,  the  surface
(or  edge)  energies  are  dependent  on  the  supply  concentra-
tion of constituent elements. To deal with this problem in bin-
ary  compounds,  there  is  a  prevalent  method  to  parametrize
the  surface  energy  by  the  variation  of  chemical  potential  of
one of the constituent atoms[52].  Under the condition of ther-
modynamic  equilibrium  between  the  bulk  region  and  sur-
faces,  there  is  a  relation  between  the  nano-crystal  total  en-
ergy and the chemical potentials of its constituents. 

μA + μB = EAB = EA + EB + ΔHf, (3)

EAB μA
μB EA EB

ΔHf

where  is  the  total  energy  of  the  binary  compound; ,
 and ,  are  the  chemical  potentials  and  total  energies

of species A and B, respectively, in their most stable element-
ary forms;  is  the formation energy of  compound AB.  The
ground  state  energy  of  the  element  and  the  formation  en-
ergy of the binary compound thus set the boundaries for the
chemical  potential  of  the  individual  elements  in  the  com-
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pound. 

Eα + ΔHf ⩽ μα ⩽ Eα, (4)

α
Δμα

where  can be element A or B. It  is also customary to define
a  relative  chemical  potential  ( )  by  subtracting  the  per-
atom ground state energy of the element, 

ΔHf ⩽ Δμα ⩽ . (5)

γ
For symmetric surface (edge for 2D lattice)  pairs,  the sur-

face (edge) energy  is given by 

γ = 
a

(Eslab − nAμA − nBμB), (6)

nA nBwhere  and  are  the  total  number  of  species  A  and  B  in
the slab respectively.  Although this  approach is  still  simple,  it
fails  to  generalize  to  an  arbitrary  surface  because  construct-
ing a symmetric slab may not be possible. On some polar sur-
faces  or  edges,  a  cleavage inevitably  creates  inequivalent  an-



ion  and  cation  termination,  application  of  Eq.  (6)  gives  only
the average surface energy of two inequivalent surfaces, an il-
lustration  of  a  zinc-blende  (111)/( )  slab  is  shown  in Fig.  2.
We  can  always  vary  the  chemical  potential  of  individual  spe-
cies  in  the  stable  chemical  potential  range  to  yield  different
surface energies and hence different ECS. The history of differ-
ent  algorithms  employed  to  find  the  surface  energies  and
also  the  corresponding  ECS  of  polar  surface,  semi-polar  sur-
face and 2D polar edge will be discussed.

2.  Polar surfaces

E(r)







At the earliest stage of polar surface study of semiconduct-
ors,  fractionally  charged  pseudo  hydrogen  (pseudo-H)  has
been  suggested  to  passivate  one  of  the  surfaces  of  the  slab
model  so  as  to  remove  the  charge  transfer  between
surfaces[53].  This  approach  allows  us  to  study  the  polar  sur-
faces individually. However, at the time of publication, the re-
moval  of  the  electrostatic  effect  between  surfaces  by  this
kind of passivation has been shown, but has not been imple-
mented in the surface energy calculation. The first attempt to
calculate absolute surface energy defined a local energy dens-
ity  and  integrated  over  the  surface  region[54].  Chetty  and
Martin[43] generalized the symmetry argument of Appelbaum,
Baraff  and Hamann[55] to  low symmetry  surface by creating a
symmetry-adapted  surface  unit  cell  bound  by  high  sym-
metry  planes,  and  computed  the  surface  energy  as  an  integ-
ral  of  local  energy density.  This  method is  first  applied to the
calculation  of  ideal  GaAs  (111)  and  ( )  absolute  surface  en-
ergy,  bridging  previous  studies  of  relative  surface  energy  on
these surfaces to show that Ga-trimer and As-trimer reconstruc-
ted  ( )  surfaces  are  always  more  stable  than  reconstruc-
tions  on  (111)  or  (110)  surfaces[56].  However,  calculations  by
Moll et  al.  using  the  same  procedure  failed  to  agree  on  the
splitting  of  slab  energy  between  the  (111)  and  ( )  surface,
leading  to  a  discrepancy  that  Ga-trimer  is  significantly  less
stable[57],  possibly  due  to  a  nontrivial  approximation  in  the
local energy density[44].

Zhang and Wei[44] first attributed the origin of surface en-
ergy  to  the  local  bonding  environment  of  individual  surface
atoms,  and  proposed  a  more  sophisticated  geometry  to  be
constructed to compute the absolute surface energy of  polar
surfaces  from  surfaces  of  known  energies,  applicable  to  sur-
faces that  are inaccessible by the standard slab method from
surfaces  of  known  energies.  In  their  work[44],  an  infinite
wedge  geometry  with  2  equivalent  surfaces  and  one  distinct
surface (Fig. 3) is used. Under this geometry, the total surface
energy  of  the  wedge  can  be  attributed  to  energies  from
three surfaces and three edges.  The unknown surface energy
can  be  solved  by  taking  the  energy  difference  between  two
reasonably  large  wedges  of  different  sizes  so  that  the  con-
verged  edge  contribution  cancels  out.  Rempel et  al.[45] also
considered the  convergence with  respect  to  wedge size,  and
proposed  to  base  the  cancellation  on  the  difference  of  edge
energies  by  considering  both  cat-  and  an-ion  termination  at
each  size.  Using  this  wedge  method,  Zhang  and  Wei[44]

shows a result similar to Moll[57] in GaAs, and the method was
applied  to  the  CdSe  polar  surfaces[45, 58] and  GaN  with  sur-
face  passivation  to  reduce  charge  transfer  between
surfaces[59].

A heterojunction supercell (Fig. 4) was also used to approx-
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Fig.  2.  (Color  online) A  slab  created  by  cleaving  a  zinc-blende  struc-
ture in (111) plane,  grey and yellow atoms represent atom species A
and B. Note the resultant upper and lower surface is of different termin-
ation.
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Fig.  3.  (Color online) Wedge structure of size n = 4 composed of two
equivalent (111) and one (001) surface used in the calculation scheme
of Zhang et al. [44].
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imate  unknown  surface  energies  from  known  ones[4, 46].  The
total energy of the slab is assumed to consist of additive com-
ponents from two surfaces, interface and bulk[46], 

Eslab = Esurface A + Esurface B + Einterface +∑
i

niμi,strained. (7)



In  Eq.  (7),  chemical  potential  has  to  be  obtained  from
strained bulk simulation using the slab lattice constant to ac-
count  for  stress  due  to  lattice  mismatch.  The  heterojunction
scheme  is  employed  to  study  the  (001)  and  (00 )  surface  of
wurtzite  GaAs[46],  and  subsequently  ZnO[4].  The  heterojunc-
tion geometry is  similar to the slab approach, thus is  not free
of  the  averaged  energy  problem  by  construction,  it  can  be
seen  in  ZB(111)/WZ(001)  interfaces  as  shown  in Fig.  5 that
the  heterostructure  would  consist  of  two  inequivalent  inter-
faces. An averaged interface energy of two interfaces may sub-
stitute for exact interface energy, smaller interface energy com-
pared  to  surface,  interface  being  coherent,  similarity  in  lat-
tice  parameters  and  local  environment  may  justify  such  ap-
proximation  in  this  work[4],  however,  a  small  lattice  mis-
match and coherent interface is not always possible.

With  the  key  assumption  of  localized  energy  contribu-

tions, the energy of an isolated crystal can be computed[44, 58]

as 

Etot,AB = nAμA + nBμB + ∑
surfaces

σsurfaces

+ ∑
edges

σedges + ∑
corners

σcorners.
(8)

σ

μHA μHB

The  passivated  surface  energy  can  then  be  systematic-
ally obtained by cancellation of bulk,  edge and corner contri-
butions.  The  transferability  of  such  an  estimation  scheme
mainly depends on 1) the ability of the proposed structure to
capture the local bonding environment of the surface to be es-
timated, and 2) good size convergence of the proposed struc-
ture  so  that  systematic  cancellation  of  other  contributions  is
possible. Zhang et al.  proposed a tetrahedral cluster reprodu-
cing  the  same  symmetry  as  the  zinc-blende[47].  The  defini-
tion  of  is  taken  to  be  the  energy  associated  with  the  sur-
face (edge, or corner) divided by the number of passivation hy-
drogen  attached  to  A  (or  B)  involved  at  the  surface  (edge,  or
corner).  Pseudo-chemical potential (PCP)  and  repres-
enting the atomic chemical potential plus the passivation con-
tribution  can  then  be  normalized  by  simple  surface  atom
counting.  A  crude  estimation  of  pseudo-chemical  potential
can be obtained from the smallest cluster of 4 pseudo-hydro-
gen passivating a host atom A as 

E(AH) = μHA + μA. (9)

n

This  estimation  was  shown  to  yield  an  acceptably  accur-
ate  surface  energy  estimation[47].  More  physical  estimations
of  pseudo-chemical  potential  can  be  constructed  by  obs-
erving that the nature of passivating hydrogen is mostly influ-
enced by its  local  bonding environment,  which can be classi-
fied according to the hydrogen attachment to a  host  atom A
at  surface,  edge  or  corner.  For  a  zinc-blende  structured
cluster as shown in Fig.  6,  the total  energy of a cluster of size

 can be expressed 

Etot(n) = 

n(n + )(n + )μA +



n(n − )(n + )(EAB − μA)

+ (n−)(n−)μsurfaceHA +(n−)μedgeHA
+μcornerHA .

(10)

EAB μsurfaceHA μedgeHA
μcornerHA

EAB

Calculation  of  4  clusters  of  different  sizes  allows  soluti-
ons for all unknowns ( , ,  and ). It shou-
ld be noted that although  is  physically interpreted as the
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B

Surface of B

Vacuum

Fig. 4. An illustration of a slab containing an interface and two passiv-
ated surfaces.

 

wz

zb

wz

Fig. 5. (Color online) A ZB(111)/WZ(001) heterojunction supercell con-
sists of 6 WZ and ZB layers used in the calculation scheme of Tang et
al.[4]. Note the two interfaces indicated by dashed lines are inequival-
ent in that ion termination at the interface exchanged.

 

Fig.  6.  (Color  online) Tetrahedral  cluster  of  zinc-blende  structure  of
size n =  4  composed  of  identically  passivated  (111)  surfaces,  passiv-
ated edges and corners. The figure is adapted from Ref. [60].
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EAB
bulk energy which should be equal to that from bulk calcula-
tion,  solving  for  the  term  avoids  error  due  to  bulk  en-
ergy differences across bulk and cluster calculations.

With  a  fractional  hydrogen[53] passivation  scheme,  in  the
case of multiple surface dangling bonds, more than one hydro-
gen  is  usually  required  per  surface  atom  to  satisfy  the  elec-
tron counting model  (ECM) requirement and to preserve sur-
face  symmetry.  Passivating  hydrogen  atoms  can  become  too
densely placed and induce a strong steric effect. The steric ef-
fect  is  particularly  severe  in  systems  with  small  lattice  con-
stants, and in the directions where periodicity is absent so uni-
form  distribution  of  stress  is  not  guaranteed.  The  significant
non-uniform  stress  produces  visible  distortion  and  long-
ranged  variation  in  bond  lengths  and  bond  angles  and  res-
ults  in  a  slow  size  convergence,  which  deteriorates  cancella-
tion  of  edge  contribution  in  the  wedge  method  between
small  sized  wedges[60].  Zhang et  al.[60] introduced  a  passiva-
tion  by  other  atoms  to  compute  the  absolute  surface  energy
of  ZB/WZ  ZnO  and  GaN,  a  pseudo-chemical  potential  is
defined  per  surface  passivating  atom  similar  to  the  proced-
ure  in  the  tetrahedral  cluster  method.  The  choice  of  surface
passivating  atom  should  a)  satisfy  ECM  same  as  the  case  of
hydrogen;  and  b)  have  a  correct  size  that  minimizes  the
stress  induced  by  the  passivation,  to  achieve  better  accuracy
and convergence with respect to wedge size.

Σ  

Absolute  interface  energy  is  of  equivalent  physical  inte-
rest  including  the  determination  of  the  wetting  condition[61]

and band offset[62].  It  is  also  interesting to  note that  the con-
nection  between  surface  and  interface  energy  established  in
a slab construction (Fig. 4) allows the determination of the ab-
solute interface energy. To determine the absolute stability of
interfaces,  a  common  energy  reference  among  all  interfaces
at  different  terminations  and  orientations  must  be  known.  In
traditional  superlattice  approaches[4, 63, 64],  an  interface  can-
not be created independently of the other complementary in-
terface, which prohibits the determination of the absolute in-
terface  energy.  The  superlattice  approach  is  thus  only  cap-
able  of  comparing  relative  stability  of  reconstructions  at  a
single  interface[63],  or  the  calculation  of  the  averaged  inter-
face  energy  of  the  two  complementary  interfaces[4].  Coup-
ling  between  two  interfaces  would  also  induce  unphysical
charge  transfer  and  dipole-dipole  interaction.  Akiyama et
al.[62] and  Zhang[61] independently  demonstrated  the  viabil-
ity  of  the  slab  construction  to  determine  the  absolute  inter-
face  energy,  with  the  former  utilizing  the  wedge  method
with  passivation  and  the  latter  utilizing  the  pseudo-hydro-
gen method for surface. Similar methodology is used to com-
pare  the  stability  between  different  terminations  and  recon-
structions  of 3  {112}  grain-boundary  in  Cu ZnSnS [65],  sug-
gesting the engineering importance of this method.

3.  Semi-polar surfaces

Over  the  past  few  decades,  even  though  the  technolo-
gies in industrial application, like the quantum dot light-emit-
ting  diodes  (LEDs)[66, 67],  of  WZ  based  semi-conductors  have
been  becoming  mature[33–38],  it  is  still  a  challenge  to  have
high  quality  crystal  growths  as  well  as  control  of  their  mor-
phologies[39–41, 60].  On  account  of  the  substantial  achieve-
ments  in  InGaN  based  LEDs,  Group-III  nitrides  have  drawn  a
lot of attention[36]. To date, there is a major limitation to GaN-

based  optoelectronic  devices  that  only  blue  emitters  have
been produced by polar  GaN grown on a c-plane (0001)  sap-
phire[33–36, 68].  It  it  also  unfavorable  to  manufacture  green-
and  yellow-light  LEDs  with  high  efficiency,  given  that  high
quality InGaN with a high indium concentration is a prerequis-
ite[41, 68–71],  because  of  the  miscibility  gap  led  by  significant
atom mismatch among indium and gallium and the piezoelec-
tric  effect  upon  polar  surfaces.  The  growth  along  non-polar
or  semi-polar  plane  in  GaN  thin  film  could  be  a  suitable
strategy to overcome this  critical  barrier,  especially  in a semi-
polar  direction[72–79],  it  is  because  the  recruitment  of  relat-
ively larger indium atoms can be assisted by any site that is un-
der tensile stress[41, 75].  Besides, owing to the fact that there is
a  weaker  piezoelectric  effect  among  semi-polar  surfaces[80],
leading  to  both  intensified  indium  recruitment[68, 75, 76] and
weakened  quantum  confined  Stark  effects[80–82].  Neverthe-
less, different from polar surfaces, there was a lack of element-
ary  knowledge  about  semi-polar  surfaces  because  no  work-
able  algorithm  was  present  for  the  calculation  of  absolute
surface energies of individual semi-polar surfaces.

The  definition  of  a  semi-polar  surface,  with  an  example
shown  in Fig.  7,  was  initially  made  by  Baker et  al.[83] as  sur-
faces  being  cut  in  the  planes  with  one  of  the h, k,  and i in-
dex and l index being nonzero in the (hkil) Miller–Bravais index-
ing  convention,  crossing  the  hexagonal  unit  cell  diagonally
and forming a non-orthogonal angle with the c-plane.

A  comprehensive  understanding  of  the  absolute  surface
energies  of  all  possible  GaN  surfaces  is  crucial  to  the  estima-
tion  of  equilibrium  shape  in  the  thermodynamic  stability
study, leading to important factors that can be used to modu-
late  the  crystallographic  growth  of  GaN,  which  are  regarded
as the key issue in the realization of broadband and multi-col-
or emission[84–91].

There is an early method proposed by Jindal and Shahedi-
pour-Sandvik in 2009[92], that tries to find the energies of differ-
ent GaN surfaces so as to create the ECS. However, only the av-
erage  value  of  two  conjugated  surface  energies  can  be  ac-
quired.  In  order  to  calculate  the  ECS  in  a  more  precise  man-
ner,  the  WZ  wedge  scheme  was  employed  to  find  the  en-
ergy  differences  between  surfaces  and  a  reference  polar  sur-
face in 2014[9]. They proposed that since individual surface en-
ergies  cannot  be  directly  obtained,  Eq.  (6)  is  not  applicable.
Therefore,  they  first  found  the  difference  in  surface  energies
between semi-polar and polar surfaces, then the surface ener-
gies  of  semi-polar  surfaces  can  be  obtained  by  further  addi-
tion  and  subtraction  of  polar  surface  energies.  The  detailed
procedures are illustrated below.

A  2D  scheme  of  Wulff  construction  is  applied  to  one  of

 

Semi-polar
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0001

Non-polar
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Fig. 7. (Color online) GaN crystal with 3 different types of surface cut.
The semi-polar one is highlighted pink.
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cosθ
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the cross-sections of GaN as indicated in Fig.  8.  The length of
 is  fixed  but  the  origin  can  be  varied  in  position  between

A  and  B.  The  position  of  origin,  which  is  unknown  now,  de-
pends  on  the  individual  energies  between  surfaces  (0001)
and (000 ).  is the difference in crystal plane radii of plane

 and  the  plane  (0001)  in  [0001]  direction.  We  can  do  the
same  trick  for  plane  to  obtain .  Hence,  we  obtain

 and .  For different 

and  values, the blue lines can be shifted vertically. After ob-
taining  and ,  the  origin  can  be  located  by  the  normal
vectors  of  planes  and ,  a  quarter  of  the  Wulff  construc-
tion is done.

σ

σs+ + σc+

σs+ + σs−
σs− − σc−

/cosθ σs

σs+ − σc+

σrelaxc+ + σc−
σrelaxs+ − σrelaxc+

BD

For this example,  is defined as the surface energy for fi-
nite area but not the unit  area.  Following the flow in Fig.  9,  a
subtraction  was  made  between  the  total  energies  of  two
wedges  of  different  sizes  to  find  the  unrelaxed  in
step  I.  The  total  energy  of  a  slab  with  semi-polar  surfaces  on
both  sides  was  also  calculated  so  as  to  obtain .
Then  in  step  II,  can  be  obtained  by  subtraction  of
the  results  from  step  I.  The  factor  is  absorbed  in ,
thus it was already possible to implement the Wulff construc-
tion  of  equilibrium  shape  corresponding  to  the  unrelaxed
structure.  Since  the  author  aimed  at  obtaining  the  relaxed
value  of ,  one  more  slab,  with  one  side  relaxed  and
the other side being passivated by hydrogen and fixed, of po-
lar  surfaces was calculated in step II  to obtain .  Fi-
nally,  in  step III,  the value of  was  claimed to be
obtained by the subtraction of  results  from step II,  hence 

BCand .  Following  the  same  procedures  for  other  cross-sec-
tions of different azimuthal angles, a volumetric Wulff construc-
tion was performed and shown in Fig. 3(c) of the literature[9].


ΔμN

However,  based  on  the  experimental  observation
from[93],  the  nanocrystals  did  not  show  the  appearance  of  a
(11 0)  surface  while  the  simulated  results  contain  this  sur-
face for  a  large range of .  This  discrepancy indicates that
their  results  are  rather  approximated and also it  is  difficult  to
judge  by  individual  surface  energies  since  only  relative  ener-
gies  were  found.  Besides,  passivation  was  not  performed  on
the  wedge  structures  so  that  unphysical  charge  transfer
should  be  present,  being especially  severe  at  the  corner.  The
relative  stability  of  different  surfaces  could  be  affected  so  as
to alter the ECS.  Therefore,  this algorithm may not be able to
give  accurate  predictions  on  the  equilibrium  shape  in  the
growth study.

The  acquisition  of  accurate  energies  of  semi-polar  sur-
faces  is  particularly  difficult  for  three  reasons:  firstly,  the  con-
ventional  slab  method cannot  be  used to  deal  with  individu-
al  semi-polar  surfaces  resulting  from  the  structural  asym-
metry;  secondly,  large  computational  input  in  the  form  of
wedges,  usually  with  high  index  planes,  are  involved  which
leads  to  high  computational  cost;  thirdly,  as  semi-polar  sur-
faces are sometimes of  a step nature,  it  is  not always feasible
to passivate  the bottom surfaces  of  slabs  with pseudo-H ato-
ms  in  the  absence  of  significant  unphysical  charge  transfer
and steric effect, which deteriorates the result accuracy[47, 60].

To overcome these mentioned difficulties, Zhang et al. in-
troduced  a  fundamentally  different  algorithm  in  2018,  using
GaN as an example[48]. The practice of passivation on polar sur-
faces  is  generally  not  applicable  to  semi-polar  surfaces  be-
cause a substantial steric effect may appear among the passiv-
ating  agents  and  ECM  may  not  be  easily  satisfied[94].  A  feas-
ible approach is to cut the semi-polar surface of the slab with
a  step-like  structure  so  that  the  surfaces  exposed  are  instead
non-polar  and  polar  which  can  be  passivated  by  suitable
pseudo-H much more easily, as shown in Fig. 10(a). Neverthe-
less,  solely  applying  the  above  modification  may  not  fully
solve  the  problem  because  the  steric  effect  may  still  be
present  at  the  location  of  included  angles  (or  corners)
between non-polar and polar surfaces, indicated in Fig. 10(b).
Thus, a unique treatment can be implemented to take the ster-
ic  effect  into  account.  This  new  strategy  is  essentially  differ-
ent from the early treatments in the calculation of surface ener-
gies and is generally applicable to the study of other high in-
dexed surfaces which are difficult to handle.

According to Eq. (3), 

μGa + μN = EGaN = EGa + EN + ΔHf(GaN), (11)

EGa EN EGaN
 μGa μN

ΔHf

where ,  and  are  the  energies  per  formula  of  sol-
id  Ga,  gaseous N  and bulk  GaN respectively;  and  are
the  chemical  potentials  of  Ga  and  N  atoms. (GaN)  is  the
formation enthalpy of  WZ GaN.  Then the energy of  the semi-
polar surface can be obtained by 

γ = 
A
{Eslab − nGa[EGa + ΔHf(GaN)] − nNEN

− (nN − nGa)ΔμN −∑ μHGa −∑ μHN}, (12)

Eslabwhere  and A are the total energy of the slab with passiv-
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Fig.  8.  (Color  online) Wulff  construction  of  one  of  the  2D  cross-sec-
tions of GaN. The yellow shaded area is a quarter of ECS in the cross-sec-
tion. This strategy is from Ref. [9].
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Fig.  9.  (Color  online) Workflow  of  finding  the  difference  in  crystal
plane radii. Blue and black notations correspond to unrelaxed and re-
laxed surface structures respectively. This strategy is from Ref. [9].
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nGa
nN
ΔμN = μN − EN

μHGa μHN

ated bottom and the surface area of the top surface.  and
 are  the  number  of  Ga  and  N  atoms,  respectively.

 is  the  relative  chemical  potential.  The  PCPs
of hydrogen passivating Ga and N atoms,  and , are es-
timated  by  using  the  tetrahedral  cluster  of  ZB  GaN,  which  is
mentioned in the section on polar surfaces.

However,  taking  the  semi-polar  surface  (11 X)  as  an  ex-
ample,  the  passivating  H  atom  may  experience  the  steric  ef-
fect  at  the  concave  corner  of  bottom  surface  as  indicated  in
Fig.  10(b).  There  was  another  treatment  proposed  to  include
this  steric  effect[48].  As  indicated  in Fig.  11,  a  slab  with  a  well
is created in which all surfaces are passivated with pseudo hy-
drogen.  The steric  effect  on the pseudo-H passivating the Ga
atoms can be calculated by 

μstericHGa = 

nstericHGa

[Eslab − nGa(EGa + ΔHf(GaN))
− nNEN − (nN − nGa)ΔμN −∑ μHGa −∑ μHN],

(13)

nstericHGawhere  is  the  number  of  pseudo  hydrogen  experien-

μstericHN

cing the steric effect. The steric effect on the pseudo-H passiv-
ating  the  N  atoms  can  then  be  found  by  interchan-
ging the Ga and N atoms of the slab. After obtaining the contri-
bution  due  to  the  steric  effect,  the  absolute  energy  of  the
semi-polar surface can be calculated by 

γ = 
A
[Eslab − nGa(EGa + ΔHf(GaN))
− nNEN − (nN − nGa)ΔμN −∑ μHGa

−∑ μHN − nstericHGa μstericHGa − nstericHN μstericHN ]. (14)

Zhang  has  used  a  slab  with  both  sides  cut  with  a  zigzag
structure  to  implement  the  convergence  test  to  give  a  resid-
ual  error  less  than  1.5  meV/Å2,  indicating  the  high  accuracy
of the method. This new algorithm to estimate the absolute en-
ergy of semi-polar surface is completely different from the tra-
ditional  methods  which  are  based  on  wedges  and  slabs.  It  is
because  this  new  method  is  applicable  to  an  arbitrary  sur-
face  as  long  as  we  can  passivate  the  polar  and  non-polar
planes at the bottom surface with zigzag structure.

Later  on  another  Japanese  group,  Seta et  al.,  published
some literature in 2019 using both slabs and wedges to estim-
ate the absolute energy of semi-polar surfaces[49].  His scheme
is  similar  to  that  proposed  by  Li  in  2014[9] except  that  Seta
modified  the  surface  of  the  wedges  by  passivation  of  hydro-
gen  so  as  to  remove  unphysical  charge  transfer,  indicated  in
Fig. 12.

σ
γ 



After  calculating  the  energies  of  wedges  in Fig.  12 for
different  sizes,  the  same  procedures  were  repeated  by  inter-
changing  the  position  of  Al  and  N  atoms.  Therefore,  the  en-
ergy  difference  (here  we  use  the  notation  for  surface  en-
ergy  instead  of )  between  passivated  surface  (11 2)  and
( ) is given by 

σ
pass − σ

pass =


A
{[Ewedge(large) − Ewedge(large)]

−[Ewedge(small) − Ewedge(small)]
−[Aσ

pass − A0001σ0001pass ]
+[μN − μAl]},

(15)

 

Super cell

Vacuum

Super cell

Ga

(a) (b)

Vacuum

polar
polar

Vacuum

N

Normal H

Pseudo H

Vacuum

N
o

n
-p

o
la

r
(1

01
0)

N
o

n
-p

o
la

r
(1

01
0)

N
o

n
-p

o
la

r
(1

01
0)

p
o

lar

p
o

lar

p
o

lar

Steric

effect

Non-polar

(1120)
Non-polar

(1120)

(102X)(101X)

 

Fig. 10. (Color online) (a) and (b) are slabs with upper semi-polar surfaces of m- and a-family, respectively, and with bottom side cut into step-struc-
ture in which the non-polar and polar surfaces are passivated by either H or pseudo-H. These figures are adapted from Ref. [48].
 

Super cell

Vacuum

Vacuum

Steric

effect
d

w

Fig. 11. (Color online) Slab with a well being cut with width and depth
as w and d, respectively, that mimic the steric effects between pseudo
hydrogen  at  the  concave  corner  between  the  polar  and  non-polar
plane. This figure is adapted from Ref. [48].
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where ,  and  are  the  area  of ,  (000 )  and
(0001)  surfaces  respectively;  (large)  and  (small)
are  the total  energies  of  large and small  wedges of  surface X
respectively [X =  or ( )].  and  are surface en-
ergies of the 000  and 0001 planes, respectively. The individu-

al  and  of  polar  surfaces  were  calculated  by  the

method in  literature[95].  Also,  +  was  calculated by
the  conventional  slab  method  with  both  sides  passivated
with pseudo hydrogen so that we can write  as
 

σ
pass =



A
[Etotal−μAl(nAl−nN)−EbulkAlN nN−μHnH−A

σ
pass],
(16)

EbulkAlN

σ
pass

where  is  the  total  energy  of  infinite  bulk  structure  of

AlN. Then absolute energy  can be finally found by solv-
ing both Eqs. (15) and (16). Hence, the absolute energy of oth-
er  semi-polar  surfaces  can  be  obtained  by  the  same  proced-
ures.

μgas

Seta has given one more improvement on the temperat-
ure  dependence  on  the  estimation  of  surface  energies  by  in-
cluding the translational,  rotational and vibrational motion of
atoms in gaseous phase into the chemical potential . 

μgas = −kBT ln
gkBT
p × ξ transξrotξvib, (17)

kB

ξ trans ξrot ξvib

where  is the Boltzmann constant; T is the growth temperat-
ure; g is the degree of degeneracy of electron energy level; p
is pressure;  and ,  and  are the partition functions
of  translational,  rotational  and  vibrational  motions,  respect-
ively.  However,  it  could  be  controversial  that  Seta  has  made
use  of  direct  passivation  of  pseudo-H  on  the  semi-polar  sur-
faces of slabs where that steric effect could be severe and pas-
sivation  on  polar  or  non-polar  surfaces  should  be  implemen-
ted instead[48].

Nearly  at  the  same  time,  Akiyama,  from  the  same  Japan-
ese  group,  proposed  another  algorithm  to  calculate  the  en-



ergy  of  polar  and  semi-polar  surfaces  simultaneously[96].  In
the  literature,  it  was  claimed  that  Zhang’s  method  may  not
be general  because he has used the ZB tetrahedral  cluster  to
obtain the PCPs of passivating hydrogen, which were then ap-
plied  to  the  WZ  structure  of  GaN.  The  error  coming  from  the
deviation between ZB and WZ could be large if  the materials
have  large  ionicity.  Also,  he  claimed  that  bond  length
between cation and pseudo-H could be too long to form the
tetrahedrally  coordinated  atomic  configuration  so  that  the
method  is  not  applicable  to  compounds  with  small  atomic
size  like  BN  and  AlN.  Therefore,  he  continued  to  use  the
scheme of creation of ideal slabs and wedges without any pas-
sivation of pseudo-H to formulate multiple equations describ-
ing  the  relation  between  different  polar  and  semi-polar  sur-
faces.  Under  the  assumption  of  orientational  independence
of  twofold  or  threefold  coordinated  Ga  and  N  surface  atoms,
the energies of the twofold or threefold surface atoms can be
obtained  and  used  to  estimate  the  energy  of  semi-polar  sur-
faces  by  counting  the  number  of  twofold  or  threefold  sur-
face  atoms  on  the  corresponding  plane.  However,  the  avoid-
ance of using pseudo hydrogen may induce a very severe er-
ror.  Without  the  passivation  on  the  surface  atoms  of  the
semi-polar  plane,  the  degree  of  distortion  will  be  different  in
different  orientation  so  that  the  twofold  or  threefold  surface
atoms will experience a different local electronic and strain en-
vironment.  To  avoid  such  distortions  and  keep  the  orienta-
tion  independence,  the  author,  instead,  calculated  the  unre-
laxed structures to obtain the absolute energies.  This eventu-
ally may lead to a large error due to the unphysical stress with-
in the unrelaxed structure. It can be easily observed by the av-
erage  of  the  absolute  energy  of  polar  surfaces  (0001)  and
(000 ), which is significantly larger than the average values ob-
tained from the conventional slab. In addition, the fundament-
al  assumption  of  orientation  independence  may  not  be  cor-
rect  because  when  the  structures  are  allowed  to  relax,  the
number and angle of  bondings depend on the local  environ-
ment.  Therefore,  the  idealization  made  in  the  literature  may
not  be  applicable  in  the  description  of  the  real  situation.  In
general, the key success in the high accuracy algorithm in the
cluster  or  modified slab method[48] is  largely  due to  the loca-
lization of charge density by pseudo-H passivation. The passiva-
tion energy is largely transferable across different microstruc-
tures.  Therefore,  the  stability  of  the  algorithm  will  be  sacri-
ficed if the passivation is removed.

4.  Polar edges of 2D materials

In the world of 2D materials,  graphene is the system that
was  first  discovered  and  the  most  intensively  studied[97–101].
Its  growth  is  relatively  simple  compared  compounds,  be-
cause it consists of one element. Thermodynamically, the ECS
is relatively easy to be investigated because no matter how it
is  cut,  the edges are always non-polar and hence the calcula-
tion of the edge energy is straightforward[101].

MoX

In  recent  years,  the family  of  2D materials  has  grown lar-
ger,  including  compounds  such  as  hexagonal  boron  nitride
(h-BN)  that  is  an  insulator,  and  molybdenum  dichalcogen-
ides  ( ),  where  X  can  be  S,  Se  or  Te,  which  are  semicon-
ductors[102].  The  latter  are  often  considered  quasi-2D  materi-
als  because  they  consist  of  several  layers  of  atoms,  unlike
graphene or h-BN. Different morphologies of h-BN, MoS2 and
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Fig. 12. (Color online) Cross section view of AlN triangular wedge with
surface ( ) and (0001) which are passivated by hydrogen. Orange, sil-
ver  and  red  spheres  represent  Al,  N  and  H  atoms  respectively.  The
area  bounded  by  a  black  line  demonstrates  that  the  removal  of  the
area creates a smaller wedge. The strategy is from Ref. [49].
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MoS2 were  observed  in  experiments.  Triangle,  truncated  tri-
angle  and  hexagon  shapes  were  observed  in  both  h-BN  and
MoS2 while  fractal,  three-point  stars  and  multi-apex  triangles
were observed in MoS2

[103–105].  Usually  convex edges suggest
that  the  growth  is  near  the  equilibrium  limit,  while  concave
edges  suggest  a  relatively  non-equilibrium  limit.  Therefore,
for triangle, truncated triangle, and hexagon shapes, the equi-
librium shape can be investigated by  the  energy  calculations
under various growth conditions. However, other shapes with
concave  edges  are  usually  due  to  the  growth  highly  limited
by kinetics and may often be off  equilibrium[106],  leading to a
high  complexity  in  the  simulation  of  the  reaction.  In  the  fol-
lowing,  only  the  shapes  in  thermodynamic  equilibrium  will
be reviewed.

To  understand  various  equilibrium  shapes  in  experi-
ments,  obtaining  the  energies  of  different  edges  are  crucial.
Due  to  the  structural  asymmetry  of  the  nanoribbon  of  these
compounds,  as  shown  in Fig.  13,  edges  with  polarities  em-
erge. The direct calculation of polar edge energy is no longer
achievable  because  the  early  method  used  in  graphene  can
only  estimate  the  average  energies  of  two  opposite  zigzag
edges in the ribbons[101].

In  the  past  few  years,  several  groups  have  developed
their  own  methods  to  estimate  the  absolute  energy  of  polar
edges.  Most  of  them  are  based  on  the  creation  of  triangular
nanoclusters  terminated  at  the  edges  with  the  same  pola-
rity[3, 51, 107].  Therefore,  the  excess  Gibbs  free  energy[108] can
be obtained by deducting the bulk chemical potential  contri-
butions,  and  the  energy  of  the  polar  edge  can  be  obtained
after the excess energy is divided by three. Even for similar ap-
proaches, there are still some technical details that may signi-
ficantly  affect  the  accuracy.  In  the  following,  three  examples
based  on  first  principle  calculations  using  DFT  will  be  ex-

amined and compared so that we can see the pitfalls of some
early methods.

In  all  methods,  polar  edge  energies  can  be  obtained  un-
der  different  chemical  potentials.  The  range  of  the  chemical
potentials  can  be  obtained  from  a  standard  calculation  of
phase  diagram  of  various  secondary  phases  of  the  com-
pound,  which has been widely  applied in  the energy calcula-
tions of point defects, surfaces, and interfaces[48, 65, 109].

Besides  chemical  potential,  passivation  of  edges  is  the
key to the calculation of edge energy. For early methods, pas-
sivation was not taken into the consideration[51, 107]. The omis-
sion of edge passivation may lead to severe errors in the estim-
ation  of  edge  stability  and  equilibrium  shape.  Experiments
and theory[110, 111] both suggest that a graphene sheet grown
next  to  the  transition  metal  step  edge  has  lower  energy  for
both  zigzag  and  armchair  edges,  as  a  result  of  charge  trans-
fer  from  the  step  edge  of  the  transition  metal  substrate  to
the edge of nano-structures. In addition, boron nitride grown
in the direction with highest substrate atom packing has high-
er  stability[112].  It  was  suggested  that  it  is  easy  for  the  elec-
tron transfer from the highest packing plane of transition met-
al substrate to the edges of nano-structures[112]. Also, to mod-
el  the  asymmetric  polar  edges  properly,  it  is  essential  to  re-
move  their  interaction  by  passivating  one  side.  During  the
growth,  decomposition  of  precursors  or  carrier  gases  may
lead to different passivation configurations that may strongly
affect  the  final  equilibrium  shapes.  Therefore,  it  is  important
to  include  the  edge  passivation  effect  in  the  estimation  of
edge and shape stability in 2D or quasi-2D materials.

The first theoretical attempt was made by estimating the
average  energies  of  h-BN  edges  terminated  by  B  and  N[50].
However,  such  an  estimation  is  too  rough  to  derive  accurate
equilibrium  shapes.  Later,  triangular  clusters  were  created  so
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MoXFig. 13. (Color online) (a)/(c) and (b)/(d) are the (top view/side view) of h-BN and  nanoribbon with edges of opposite polarities, respectively.

10 Journal of Semiconductors      doi: 10.1088/1674-4926/41/6/061101

 

 
C K Sin et al.: A brief review of formation energies calculation of surfaces andedges ......

 



that only one type of zigzag (ZZ) edge, which is polar, was in-
vestigated  at  a  time[107].  In  that  paper,  the  energy  of  the  po-
lar edges was formulated by the following equations 

γZB(μ) = EB-edged cluster − nBNμBN − nedgeμB
nedge

, (18)
 

γZN(μ) = EN-edged cluster − nBNμBN − nedgeμN
nedge

, (19)

γZB/ZN(μ)
EB/N−edged cluster

nBN
μBN

μB/N
nedge

μB/N = 

μBN + μ μ

where  is the edge energy per unit length of zigzag
B-edge or N-edge, respectively;  is the total en-
ergy  of  B-  or  N-edged  triangular  cluster,  respectively;  is
the  number  of  BN-pairs;  is  the  energy  of  BN-pairs  in  a
2D-infinite  BN  sheet;  are  the  chemical  potential  of  ex-
cess B or  N atoms in B-terminated or  N-terminated triangular
clusters,  respectively;  is  the  number  of  atoms  at  the

edge.  Also, .  is  a  changing  variable  which

plays  the  role  of  varying  chemical  potential  in  the  experi-
ment.  The  computational  setup  and  results  are  summarized
in Fig. 14(a). The equilibrium shape at various chemical poten-
tials  can  be  observed  in Fig.  14(b),  which  showed  the  most
stable  edge  changed  from  zigzag  B-edge  (ZB)  to  armchair
(AC)  then  to  zigzag  N-edge  (ZN)  when  the  condition  was
changed from B-rich to N-rich (i.e. from left to right).

The results  suggest  that  it  is  possible for  armchair-edged
hexagon to exist at the mid-range of chemical potential. In ad-
dition,  other  literature  gives  the  same  computational  predic-
tion  on  the  stability  of  the  armchair  edge[50, 113].  However,
there has  been no experimental  observation of  the existence
of  armchair  hexagons  or  truncated  triangles  with  armchair
corners,  while  the  alternating  B-  and  N-terminated  hexagons
was  observed  experimentally[103].  Therefore,  this  calculation
scheme  may  contain  pitfalls  in  simulating  the  physical  sys-
tem under real conditions.

The  bare  triangular  cluster  was  reported  to  contain
corner distortions and inter-edge couplings[114], which may pro-
duce  extra  systematic  errors  and  lower  the  calculation  accur-
acy. Usually, the edges of the clusters have a different electron-
ic  structure  from  the  ribbons,  with  significant  charge  trans-

fers  and  atomic  reconstructions,  which  are  especially  severe
near the corners. The most ideal situation is that all the edges
in  the  triangles  have  the  same  electronic  environment  as
those  in  the  ribbon.  To  mimic  the  electronic  environment  of
edges in  the ribbons,  it  is  important  (1)  to passivate one side
of  it  and  remove  the  inter-edge  interaction;  (2)  to  estimate
the passivation energy of  hydrogen by constructing triangles
with  passivated  edges.  However,  this  literature  does  not  in-
clude detailed procedures in the passivation. Only in a later ex-
ample[3],  a  more  detailed  scheme  was  provided.  During  the
CVD  growth  of  BN,  a  large  amount  of  hydrogen  may  exist
due  to  the  decomposition  of  the  precursors  and  passivate
the  edges,  the  passivation  energy  and  related  reconstruc-
tions  were  not  systematically  explored.  In  addition,  the  tem-
perature effect  of  the passivation may play an important role
in the stability[3] and was not considered.

γ l

Another method proposed by Cao et al. to find the equi-
librium  shape  of  MoS2

[51] is  better  than  the  previous  one  in
handling  the  corner  problem  in  the  polar-edged  triangular
cluster.  The  structural  inputs  and  different  types  of  polar
edges being studied are shown in Fig. 15. The energies of the
triangular cluster  with side length  are 

γ = EZ + EZPE − nMoμMo − nSμS = lγZ + γV, (20)

EZ MoS
EZPE γZ
γV

where  is the total energy of the triangular cluster of ;
 is the zero-point energy of the triangular cluster;  and

 are the energies of the ZZ edge and the vertex. After calcu-
lations  of  two  triangular  clusters  with  different  length  edges,

 

B-rich N-rich

(a)

(b)

Fig.  14.  (Color  online) (a)  The  computational  setup  for  triangular
clusters  with  green  dots  as  boron  atoms  and  silver  dots  as  nitrogen
atoms. (b) The result of equilibrium shapes at different chemical poten-
tial ranges[107] in which blue, red and black are ZB, ZN and AC edges, re-
spectively.
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Fig. 15. (Color online) (a) The  triangular clusters of different sizes
enclosed  by  two  triangles  with  length  and .  (b)  Structure  of  four
main type of zigzag edges. Other reconstructions of edges were also
studied but they are not important in the final equilibrium shape. For
details please refer to Ref. [51].
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MoSFig. 16. (Color online) Equilibrium shape of  under different chem-
ical  potential  of  S  atoms  constructed  by  Wulff  construction.  The  fig-
ure is adapted from Ref. [51].
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the  corner  contribution  can  be  removed  by  subtraction.  The
S-terminated  triangular  example  is  used  in  the  following
equations 

γZ = (ΔEZ + ΔEZPE − ΔnMoμMoS − ΔnμS)/(l − l),
ΔnMo = nMo(l) − nMo(l),
Δn = nS(l) − nS(l) − [nMo(l) − nMo(l)],

(21)

ΔEZ ΔEZPE

l l
μS = μS(bulk) + ΔμS

ΔμS

where  and  are  the  difference  of  total  energy  and
zero-point  energy between two triangular  clusters  with  edge
length  and  respectively.  The chemical  potential  of  excess
S atoms is  so that it can be varied by vary-
ing .  The Wulff  construction of  the calculation results  are
shown in Fig. 16.

From  the  Wulff  construction,  the  S-terminated  triangular
shape  can  be  observed  in  an  S-rich  condition  in  which  the
shape  matches  the  experimental  results[104, 115, 116].  Besides,
this  S-rich  edge  is  the  ZZ-S2  edge  which  is  a  Y-shape  rather
than  a  pure  zigzag  structure,  confirming  the  experimental
result  in  Ref.  [116].  However,  when  the  chemical  potential  of
S  was  reduced,  a  truncated  triangular  or  hexagonal  structure
with ZZ-Z and ZZ-Z2 were predicted. This does not match the
result  of[116] in  which  the  hexagonal  structure  is  terminated
by  an  alternating  S-monomer  attached  Mo-edge  and  hydro-
gen-passivated  S-edge.  This  discrepancy  could  probably  be
attributed to the exclusion of calculation that the S-monomer
attached  Mo-edge  and  also  to  the  omission  of  consideration
of the temperature effect. Therefore, the calculations failed to
yield  the  proper  experimental  equilibrium  shapes  in  the
whole chemical potential range.

∼  ∼ .

Before  entering  the  last  example,  it  is  good  to  mention
that  the  method  of  Cao's  example  is  suitable  for  obtaining  a
fast  calculation.  Yet,  there  is  another  method  proposed  by
Zhang et  al.[3] dealing  with  h-BN  that  can  reduce  the  error
from %  by  bare  triangular  to %  by  passivated  trian-
gular  cluster.  In  his  calculation,  the  importance  of  restoring
the  original  bulk  electronic  configuration  was  emphasized.
Theoretically,  if  we  want  to  calculate  the  energy  of  an  arbit-
rary  edge,  we  have  to  create  a  semi-infinite  crystal  with  only
one  edge  exposed.  This  condition  is  imitated  by  passivation
on  one  of  the  edges  on  a  nanoribbon  as  shown  in Fig.  17(c).
The  absolute  energy  of,  for  example,  a  zigzag  boron  (ZZB)
edge is given by 

γedge =

l
(Etot − nBμB − nNμN − nHNμHN −∑

i

niμi) , (22)

Etot
nB nN

nHN
μB μN μHN

ni μi

where  is  the  total  energy  of  the  nanoribbon  with  arbit-
rary  configurations  on  the  upper  edge  in Fig.  17(c); , 
and  are the number of  B,  N and passivating H atoms,  re-
spectively; ,  and  are  chemical  potentials  of  B,  N
and passivating H atoms, respectively.  and  are the num-
ber  and  chemical  potential  of  the  adsorbed  atoms,  respect-
ively.

Therefore,  instead  of  a  direct  calculation  of  edge  energy
from the bare triangular cluster, the chemical potentials of pas-
sivating hydrogens have to be first estimated from the passiv-
ated  cluster.  The  reason  for  the  more  reliable  calculation  of
the  chemical  potential  of  passivating  hydrogen  than  the
edge energy of the bare triangle is  that the passivation helps
to  reduce  corner  distortion  and  the  unphysical  charge  trans-
fer[3] which can be compared in Figs. 17(d) and 17(e). In the cal-
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Fig. 17. (Color online) B, N and H atoms are denoted by pink, blue and white spheres respectively. (a) Passivated and unpassivated zigzag and arm-
chair edges. (b) Reconstruction of seven- and five- rings on the ZZN and ZZB edges, respectively. (c) Ribbon of bottom zigzag edged passivated
with hydrogen and arbitrary configuration on the upper zigzag edge. (d) N-terminated passivated triangular cluster of size m = 5. (d) Bare N-ter-
minated triangular cluster with corner distortion as indicated by red circle. (a) Ribbon with fully passivated zigzag edges. The figure is adapted
from Ref. [3].
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Eclustertot

culation  of  chemical  potential  of  passivating  hydrogen  in  a
triangular  cluster,  different  size  (m)  of  passivated  triangular
clusters  are  calculated  so  as  to  obtain  their  total  energy

.
 

Eclustertot = m +m


μN +
m −m


μB + (m − )μHN + μcornerHN ,

(23)

μcornerHN

μHN μB
μN

where m is  the cluster size and  is  the chemical  poten-
tial of hydrogen atoms at corners, as shown in Fig. 17(d). Prac-
tically,  we  can  obtain  under  different  values  of  and

 by  non-linear  fitting.  In  the  thermodynamic  equilibrium
between the edges and the bulk h-BN, from Eq. (3), 

μB + μN = Eh-BN = EB + EN + ΔHh-BN, (24)

Eh-BN EB EN
 ΔHh-BN

μN μN
EN + ΔHh-BN ⩽ μN ⩽ EN

where ,  and  are  energy  per  formula  in  bulk  h-BN,
solid  B  and  gaseous  N ,  respectively.  is  the  formation
enthalpy  of  h-BN.  We  can  simplify  Eqs.  (23)  and  (24)  taking
chemical  potential  of  N  atoms  ( )  as  the  parameter,  can
take a value between . 

Eclustertot =m(Eh−BN


)+m (μN −
Eh−BN


+ μHN)+(μcornerHN −μHN ).
(25)

Eh-BN μHN μcornerHN
Eclustertot

Eh-BN

There  are  three  red-colored  parameters  to  be  fitted
,  and . Therefore, a quadratic fitting is needed

after  of  different m are  obtained.  The  fitting  graph  is
shown  in Fig.  18.  A  direct  check  for  the  accuracy  of  the  fit-
ting  is  to  compare  the  fitted  with  a  separate  calcula-
tion of the 2D monolayer.

After  the  estimation  of  hydrogen  chemical  potential,  the
half-passivated ribbon with arbitrary configuration on the up-
per edge (Fig.  17(c))  can be calculated to obtain the absolute
energy  of  the  particular  polar  edge  by  Eq.  (22).  Also,  Zhang
has  proposed  a  self-consistency  check  to  ensure  the  accur-
acy  of  the  algorithm  by  calculating  the  residual  error Er. Er

can be calculated by Eq.  (26)  after the calculation of total  en-
ergy  of  both  sides  passivated  ribbon Ep.  Zhang  has  shown
the  error  is  reduced  from  3.43%  to  0.12%  when  compared
with the bare triangular method. 

Er =

l
(Ep − nNμN − nBμB − nHNμHN − nHBμHB ). (26)

μH
EH

After that,  Zhang had shown in Fig.  3 of  their  literature[3]

that  bare  armchair  (ARM)  is  the  most  stable,  which  matches
the computational results given by[50, 113] but does not match
the  experimental  results[103].  Therefore,  Zhang  included  the
calculation  of  a  passivated  edge  (upper  edge)  in  which  the
chemical  potential  of  the hydrogen  is  half  of  the total  en-
ergy of H2 molecules . Also, he had included the considera-
tion of the temperature effect by 

μH = 

[EH + ΔμH(T, p)], (27)

ΔμH(T, p)
T

p

where  captures  the  contributions  from translation-
al,  rotational  and  vibrational  motions  at  temperature  and
pressure . High temperature growth condition at 1300 K and
1  atm  was  simulated  by  the  author  in  which  the  vibrational
state of H2 was dominant in the contribution. Thus, he used 

ΔμH(T, p) = G
N

(28)

ΔμH(T, p) G

ΔμN

ΔμN

to  obtain . N is  the  number  of  H2 molecules.  is
the  Gibbs  free  energies  of  gaseous  H2 in  reference  to  abso-
lute  zero,  which  is  obtained  from  the  experimental  data[117].
After  the inclusion of  temperature effect  and passivation,  the
ZZNH edge becomes the most stable one and gives a triangu-
lar  equilibrium  shape  in  N-rich  condition  which  is  shown  in
Fig.  19.  This  matches  the  experimental  result[103] and  also
gives a higher accuracy than the bare triangular cluster meth-
od.  However,  the  chemical  potential  below  each  plot  in
Fig.  19 should  be  the  phase  boundary  between  the  success-
ive  Wulff  shapes,  which  is  not  clearly  illustrated  by  the  au-
thor. A better way for the author to illustrate this idea is to col-
or  the  phase  regions  of  different  morphologies  in  the  dia-
gram of edge energies against .  Besides,  there is  another
unclear  point  in Fig.  19 that  only  the  left  five  figures  are  in
the  stable  chemical  potential  range  of  N  atoms.  The  remain-
ing two on the right morphologies are likely to be out of  the
stable range and were just listed out to indicate what morpho-
logies  could  be  if  the  chemical  potential  range  can  be  fur-
ther tuned by other physical quantities.

After  the  discussion  of  several  methods  of  calculating
the  polar  edge  energy,  the  last  one  proposed  by  Zhang,  is
able  to  capture  more  physical  pictures  and  also  gives  the
highest  accuracy  because  it  includes  the  temperature  effect
and  passivation  which  leads  to  stabilization  effect  to  all  type
of  edges.  It  is  also  capable  of  revealing  the  important  role
played  by  hydrogen  atoms  in  the  growth  of  2D  h-BN  mo-
nolayer.

5.  Conclusion

We  have  reviewed  some  important  historical  algorithms
on  the  assessment  of  surface  and  edge  stability  of  various
semiconducting  compounds.  The  key  concept  for  a  success-
ful  algorithm  is  to  eliminate  the  long  range  charge  transfer
and  interaction  of  different  surfaces  or  edges  by  passivating
dangling  bonds  and  mimicking  the  electronic  environment
of  the  desired  surfaces  or  edges.  In  addition,  not  all  passiva-
tion  can  yield  a  reliable  result  because  an  electron  counting
model  has  to  be  satisfied  and  steric  effects  should  be
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avoided.  To  estimate  the  localized  steric  effects,  it  is  possible
to perform further simulation that can mimic the stressed loc-
al  configuration. Still,  further investigations of quasi-2D struc-
tures  are  highly  important,  yet  largely  missing  because  they
lack  effective  passivation  schemes  on  the  edges.  With  all  the
technological  advancements,  we  can  safely  conclude  that  a
highly accurate algorithm combining a reasonable analysis of
passivation and temperature  effects  can have strong predict-
ive  power  in  the  equilibrium  shape  under  various  growth
conditions  and  the  dawn  of  a  highly  effective  collaboration
between  theoreticians  and  experimentalists  may  largely  im-
prove  the  field  of  crystal  growth  and  device  fabrication  of
semiconductors.
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